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ABSTRACT 

Real-world multi-objective engineering design optimization 
problems often have parameters with uncontrollable variations. 
The aim of solving such problems is to obtain solutions that in 
terms of objectives and feasibility are as good as possible and at 
the same time are least sensitive to the parameter variations. Such 
solutions are said to be robust optimum solutions. In order to 
investigate the trade-off between the performance and robustness 
of optimum solutions, we present a new Robust Multi-Objective 
Genetic Algorithm (RMOGA) that optimizes two objectives: a 
fitness value and a robustness index. The fitness value serves as a 
measure of performance of design solutions with respect to 
multiple objectives and feasibility of the original optimization 
problem. The robustness index, which is based on a non-gradient 
based parameter sensitivity estimation approach, is a measure that 
quantitatively evaluates the robustness of design solutions. 
RMOGA does not require a presumed probability distribution of 
uncontrollable parameters and also does not utilize the gradient 
information of these parameters. Three distance metrics are used 
to obtain the robustness index and robust solutions. To illustrate its 
application, RMOGA is applied to two well-studied engineering 
design problems from the literature.   

Categories and Subject Descriptors 
G.1.6 Optimization–Nonlinear Programming; 
 

General Terms 
Design, algorithms 
 

Keywords 

Multi-objective genetic algorithms, robust design optimization, 
performance and robustness trade-off 

 

1. INTRODUCTION 
There are many engineering optimization problems in the real 
world that have parameters with uncontrollable variations due to 
noise or uncertainty. These variations can significantly degrade the 
performance of optimum solutions and can even change the 
feasibility of obtained solutions. The implications of such 
variations are more serious in engineering design problems that 
often have a bounded feasible domain and/or where the optimum 
solutions lie on the boundary of the feasible domain.  
Many methods and approaches have been proposed in the 
literature to obtain robust design solutions; that is, feasible design 
alternatives that are optimum in their objectives and whose 
objective performance or feasibility (or both) is insensitive to the 
parameter variations. Generally, those approaches can be classified 
into two types: stochastic approaches and deterministic approaches. 
Stochastic approaches use the probability information of the 
variable parameters, i.e., their expected value and variance, to 
minimize the sensitivity of solutions (e.g., Parkinson et al. [1], Yu 
and Ishii [2], Jung and Lee [3] for objective robust optimization; 
and Du and Chen [4], Chen et al. [5], Tu, Choi and Park [6,7], 
Youn et al. [8] and Ray [9] for feasibility robust optimization – 
also called reliability optimization. Also, Jin and Sendhoff [10] 
proposed an evolutionary approach to deal with the trade-off 
between performance and robustness using variance information). 
The main shortcoming of stochastic approaches is that the 
probability distribution for the uncontrollable parameters is known 
or presumed. However, it is difficult (or even impossible) to obtain 
such information beforehand in real-world engineering design 
problems.  
Deterministic approaches, on the other hand, obtain robust 
optimum design solutions using gradient information of the 
parameters (e.g., Balling et al. [11], Sundaresan et al. [12, 13], 
Zhu and Ting [14], Lee and Park [15], Su and Renaud [16], 
Messac and Yahaya [17]) or using a non-gradient based parameter 
sensitivity estimation (Gunawan and Azarm [18-21]). The aim of 
the Gunawan and Azarm’s approach [18-21] is to obtain optimum 
solutions which essentially satisfy an additional robustness 
constraint that is prescribed by the decision maker (DM).  
In this paper, we present a new deterministic approach to 
investigate the trade-off between the performance and robustness 
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of optimum solutions, based on a Multi-Objective Genetic 
Algorithm (MOGA). The goal of our approach is to 
simultaneously optimize: i) a measure of the optimum solutions’ 
performance, i.e., the fitness value, that accounts for objective and 
constraint values in the original optimization problem (defined in 
Section 2), and ii) a measure of the optimum solutions’ robustness, 
the robustness index, originally proposed by Gunawan and Azarm 
[18-21], extended in this paper with the use of two additional 
distance norms. This approach is a deterministic method using 
non-gradient based parameter sensitivity estimation, which can be 
applied to optimization problems having objective and/or 
constraint functions that are non-differentiable with respect to the 
parameters. Any MOGA in the literature can be applied to this 
approach.  
In Gunawan and Azarm’s approach [18-21], the authors tried to 
obtain optimum solutions that are insensitive to the parameter 
variation. In other words, the robustness requirement was 
considered as a constraint in their approach. On the contrary we 
treat “robustness” as one of our objectives and form a new 
two-objective robust optimization problem (regardless of how 
many objectives the original problem has), to investigate the 
relation between the performance and robustness of solutions. The 
RMOGA here aims at simultaneously maximizing performance 
and maximizing robustness. 
The organization of the rest of this paper is as follows: In Section 
2, we present the original optimization problem and explain some 
definitions and terminologies. Based on a brief description of the 
objective and feasibility robust optimization approach, we present 
our new approach in Section 3. Section 4 demonstrates the 
application of our approach to two test problems followed by a 
discussion of the results. The paper concludes with a summary in 
Section 5.  
 

2. PROBLEM DEFINITION 
In this section, we formally define the problem and explain several 
definitions and terminologies used in this paper. 
A general formulation of multi-objective optimization problem is 
shown in (1).  
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(f1,…, fM)t are the objective functions (‘t’ refers to a transpose of 
the row vector), x = (x1,…,xN)t is the design variable vector 
(controlled in an optimization run), p = (p1…,pG)t is the 
uncontrollable parameter vector. Note that design variables that 
themselves have uncontrollable variations are included in both x 
and p.  xlower and xupper are the lower and upper bounds of x, 
respectively. The problem has J inequality constraints, gj, j=1,…,J. 
We presume that all constraints can be represented as inequality 
functions. In this paper, we call the optimization problem shown in 
(1) as the original problem.  
Since there are trade-offs amongst the M objectives, usually the 
original problem has more than one optimum solution. The set of 
these optimum solutions is called the Pareto set, as discussed in 
Miettinen [22] and in Deb [23].  
In the following, we briefly describe some terminologies that are 
used in this paper. 
Nominal parameter value p0 = (p0,1,…,p0,G)t is the parameter 
vector values, p = p0, used to optimize the problem in (1). The 
parameter’s variation is ∆p = (∆p1,…, ∆pG)t. 

Nominal Pareto solutions are the Pareto solutions of the 
optimization problem in (1) when p = p0. 
Let x0 be a design solution whose robustness we want to analyze.  
f(x0 ,p0) = (f1(x0, p0),…,fM(x0 ,p0)) are the nominal values for the 
objective functions, and g(x0,p0) = (g1(x0,p0),…, gJ(x0,p0)) are the 
nominal values for the constraint functions. 
Tolerance Region is a hyper-rectangular region in ∆p-space 
formed by a set of ∆p values with respect to which the decision 
maker wants the robust optimum solution to be insensitive. This 

region is usually bounded by upperlower
ppp ∆≤∆≤∆ , where the 

known ∆plower and ∆pupper are the lower and upper bounds of ∆p, 
respectively, ∆plower = (∆p1

lower,…,∆pG
lower)t and 

∆pupper = (∆p1
upper,…,  ∆pG

upper)t. For simplicity, the tolerance 
region is assumed to be symmetric, i.e., -∆pi

lower = ∆pT,i = ∆pi
upper , 

.,,10, Gip iT K=∀>∆  Since there can be more than one 

uncontrollable parameter with different magnitudes, we normalize 
the tolerance region to form a hyper-square.  
Parameter variation space (∆p -space): A G-dimensional space in 
which the axes are the parameter variation ∆p values. 
Acceptable Performance Variation Region (APVR) is the region 
formed in the objective function space around the point f(x0 ,p0), 
which represents the maximum acceptable performance variation 
chosen by the DM, i.e., ∆f0 = (∆f0,1,…, ∆f0,M)t, where 

Mif i ,,1,0,0 K=∀≥∆ . See Figure 1(a) for details. 

Fitness value fv is a value that measures a solution’s performance 
in a combined objective and constraint sense. The fitness value (or 
rank) obtained from a MOGA, e.g., NSGA [23], can be used as the 
fitness value in our approach.  
Robustness index η  is a ratio that calculates the radius of the 

worst–case sensitivity region (defined in Sec. 3.2) with respect to 
∆p over the radius of the exterior hyper-sphere of normalized 
tolerance region [18]. It is used as a robustness measure in our 
method. We will discuss it further in Section 3.  
Distance norm Lp for an N-dimensional vector x is the vector norm 

p
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3. ROBUST MOGA 
In this section, we first briefly discuss the sensitivity estimation 
proposed by Gunawan and Azarm [18-21], based on which, the 
measures for robustness and performance of solutions are defined. 
We then present our two-objective RMOGA approach. 
  

3.1 Parameter Sensitivity Estimation 
We first discuss the approach for multi-objective robust 
optimization, followed by the approach for feasibility robust 
optimization and then the combined approach. 
Given an APVR for a solution x0, there is a set of ∆p such that the 
variation in objective functions values due to the ∆p are still 
within the ranges of ∆f0,i for all i = 1, . . . , M. This set of ∆p forms 
a hyper-region around the origin in ∆p-space, which is called the 
Sensitivity Region (SR). The region is bounded as shown in (2): 
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Figure 1 shows the APVR and its corresponding SR for a solution 
x0 in a two- parameter and two-objective case. Graphically, the 
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points inside, outside, and on the boundary of the APVR 
correspond to the points inside, outside, and on the boundary of 
the SR (Figure 1(b)), respectively. 
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∆p 1 

Sensitivity R egion  

β  α  

 
(b) 

 
Figure 1 (a) The APVR and (b) the SR 

Essentially, the SR represents the amount of parameter variations  
that a solution x0 can absorb before it violates the APVR. We can 
use the size of the SR as a measure for the sensitivity of a design: 
the larger the SR for a design, the more robust that design is. 
However, in general, the shape of the SR can be asymmetric, 
which means a design can be very sensitive (or much less robust) 
in a certain direction of ∆p (such as direction β in Figure 1(b)), but 
much less sensitive (or very robust) in other directions (such as 
direction α in Figure 1(b)). To overcome this asymmetry, a 
Worst-Case Sensitivity Region (WCSR) is used to estimate the SR 
of a design. The WCSR is a symmetric hyper-sphere that 
approximates the SR. Graphically, the WCSR is the smallest 
hyper-sphere that touches the SR at the closest point to the origin, 
as shown in Figure 2 for a two-parameter case.  
Since the WCSR is symmetric, the radius of the WCSR, Rf, 
instead of the size of the WCSR, could be used as our robustness 
measure. It measures the overall robustness of a design. The radius 
of the WCSR for x0 can be calculated by solving a single-objective 
optimization problem shown in (3).  
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In this problem, the design variables are the ∆p’s, the objective 
function is the radius of the WCSR. The equality constraint 
function means that the resultant vector of ∆fi touches the 
boundary of the APVR, which means that ∆p is on the boundary 
of the sensitivity region. Detailed discussion of this WCSR 
estimation approach is given elsewhere [18,19].  
A similar approach can be used for the feasibility robust 
optimization. For a design x0, all ∆p points whose corresponding 
constraint function value gj(x0,p0+∆p) ≤ 0, j=1,…,J, form the 
Feasibility Sensitivity Region (FSR), which means the ∆p inside 
the FSR will not change the feasibility of design x0. The 
Feasibility WCSR (or FWCSR) is the worst-case estimate of the 
FSR (similar to the WCSR) and Rg is the radius of the normalized 
FWCSR. Rg can be calculated by (4). 
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Since the SR and the FSR are defined in the same ∆p-space and 
are of the same scale, R = min(Rf, Rg) implies that we are looking 
for the radius of worst-case estimate of the intersection of the SR 
and the FSR for a design solution, as shown in Figure 2.  
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Figure 2 The intersection of SR and the FSR 

The radius R can be calculated by solving the optimization 
problem shown in (5). 
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For example, in the case shown in Figure 2, R = min(Rf, Rg) = Rf.  
 

3.2 Robustness Index 
The radius R represents a solution’s robustness on an ordinal scale 
and does not have a physical association with the design solution 
itself. As such it can be difficult for the DM to do the trade-off 
analysis between the performance and robustness, i.e., given R, 
s/he can not decide whether a design solution is robust or not. To 
overcome this difficulty, we use the radius of the exterior 
hyper-sphere of the normalized tolerance region, RE, as a reference 
for the robustness requirement (Figure 3). We define the 

robustness index 

ER

R
====η  and use this robustness index as one 

of the two objectives in our RMOGA. R is the optimum solution 
calculated in (5). Since RE is the radius of the exterior circle of the 

normalized tolerance region, if 
1≥≥≥≥====

ER

R
η

, then the design x0 

is robust. 
 

Normalized 

tolerance region 

RE 

∆p2 

∆p1 

 

Figure 3 The exterior circle of the normalized tolerance region 
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3.3 Fitness Value 
Recall that our goal in this paper is to simultaneously maximize 
the performance and robustness of a design. The robustness index 
serves as a measure of robustness of the design solutions. Hence 
we need another measure for the overall performance of design 
solutions.  
In multi-objective optimization problem, MOGA is a good tool to 
obtain Pareto optimum solutions. Most MOGAs assign a fitness 
value or a rank to each alternative solution in the population to 
represent its relative goodness, accounting for both objective 
values and constraints. So the fitness value (or rank ordering) 
obtained from any MOGA approach, e.g. the rank value from 
NSGA [23], can be used as the performance measure in our 
approach: the smaller the fitness value, the better the performance 
of the solution. For more details on how to obtain this fitness value 
the reader is referred to [23].                                   
Note that different MOGA approaches may generate different 
solutions in our approach. However, our goal here is not to 
develop a new genetic algorithm or distinguish between different 
MOGAs.   
 

3.4 RMOGA Approach 
Given the two measures for performance and robustness of a 
design solution, as discussed before, we can formulate our 
problem that has two objectives: one is the performance and the 
other is the robustness for a design solution. The formulation of 
our robust multi-objective optimization problem is shown in (6) 
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Here the fitness value fv is a function of the objectives and 
constraints that are calculated in (1). The robustness index η is 

calculated from (5).  
An optimization approach (Figure 4), with an outer-inner structure, 
is utilized to solve the problem shown in (6). The outer 
sub-problem (i.e., the upper sub-problem in Figure 4) is to 
simultaneously minimize the fitness value fv and maximize the 
robustness index η . We use the inner sub-problem (i.e., the lower 

sub-problem in Figure 4) to calculate the radius R (recall (5)) with 
respect to ∆p. 
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Figure 4 Outer-inner optimization structure of RMOGA 

 

We start with an x value, called x0, in the outer sub-problem and 
send it to the inner sub-problem (including the nominal values for 
fm(x0,p0) and gj(x0,p0)). The nominal values are fixed in the inner 
sub-problem. We then optimize the radius R as a function of ∆p for 
the nominal design x0, and the optimal value R is sent back to the 
outer sub-problem. This is repeated for all design alternatives 
under consideration (see Figure 4).  
We now discuss the fitness assignment procedure used in the 
implementation of RMOGA. For conciseness, the MOGA details 
are not discussed here and the focus is on the RMOGA. The 
Genetic Algorithm (GA) requires a scalar fitness value for all the 
candidate solutions. The major steps in the fitness assignment 
procedure are as follows: 
 
Step 1: Evaluate the objectives and constraints of the original 
problem (1).  
Step 2: Calculate the robustness indexη for each of the candidate 

solutions. 
Step 3: Perform a non-dominated sort on the population based on 
the objective values of the original problem. Consider this rank 
and the constraint violation to assign a fitness value fv to the 
candidate solution. 
Step 4: Perform a non-dominated sorting on the population based 
on robust indexη and fitness value fv as the objectives. This is 

essentially a two-objective non-dominated sorting. 
Step 5: Assign a fitness based on the non-dominated rank from 
Step 4 and continue the GA iterations until convergence is 
reached. 
 

3.5 Distance Norm 
In (5) we could use three different q values q=1,2 and ∞. Different 
Lq-norms will affect the value of the robustness index of a design 
solution. As shown in Figure 5, the distance from point A, B and C 
to the origin correspond to the radius solution from (5) in L1, L2 
and L∞ norm. The robustness measure should be specified in a 
particular distance-norm. 
 

 

B 

C A

∆p2 

∆p1 

Sensitivity Region 

L2-norm 

L1-norm 

L∞ -norm 

  

Figure 5 The effect of different Lp- norms 

 

4. TEST RESULTS 
In this section, we will demonstrate an application of the proposed 
approach to two test problems.  

4.1 Test Problem 1 

4.1.1 Problem Description 
The first test problem that we use to demonstrate the RMOGA 
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approach is a popular test problem from the engineering design 
optimization literature, also studied by Kirsch [24] and Deb [23]. 
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Figure 6 Schematic for two-bar truss design problem 

 
The problem is to design a two-bar truss that can carry a single 
vertical load of 100kN at joint C. The truss comprises of two links 
as shown in the Figure 6. The objectives are to minimize the 
volume of the two links and to minimize the stress in them as well. 
The variables are the cross-sectional areas of the links, x1, x2, and 
the vertical drop of the joint y. The constraints are: an upper limit 
of 100,000 kN/m2 for the stress, the range 1.0-3.0 m for y, and a 
non-negative value for the cross-sectional areas. The problem is 
formulated as follows: 
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4.1.2 RMOGA Solutions 
The known variation in the design variables was set as        
∆x1 = ∆x2 =0.0001 and ∆y=0.05. The acceptable performance 
variation ∆f0,1 and ∆f0,2 was set to 0.75 kN/m2 for both. 
Figure 7 shows the Pareto optimum solutions as well as all other 
(dominated or inferior) solutions obtained by solving problem (6). 
It can be seen that of all the solutions with the best fitness value,  
fv = 1, only one design is robust, i.e., it has a robustness index 

η greater than 1. On the other hand we see that several solutions 

with a lower fitness value (fv greater than 1) are robust. However, 
there are only a few Pareto optimum solutions obtained for the 
problem defined in (6), but these solutions are the best in terms of 
both robustness and the fitness value of the original problem. It is 
possible that a decision maker might not choose a solution from 
this set of Pareto optimum solutions as these solutions might prove 
more robust than is necessary. 
Figure 8 compares the Pareto optimum solutions obtained by 
RMOGA (i.e., RMOGA Pareto) as shown in (6) and mapped on to 
the objective function space, with those solutions (i.e., Nominal 
Pareto) obtained by a traditional MOGA that does not consider 
robustness. We observe that the Pareto optimum solutions obtained 
by RMOGA are further away from the origin (compared to 
Nominal Pareto), which as expected leads us to conclude that the 
Nominal Pareto solutions obtained by a MOGA are not necessarily 
robust. 
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Figure 7 Fitness value vs. robustness index for two-bar truss 

problem using RMOGA (with L2 norm for R)  

 
Figure 8 also includes all solutions from Figure 7 that have a 
robustness index of greater than or equal to 1 ( 1≥η ) irrespective 

of their fitness value fv.  
 

0

10

20

30

40

50

60

70

0 20 40 60 80 100

f
1 (minimize)

f
2
 (

m
in

im
iz

e
)

Nominal Pareto

RMOGA Robust Solutions

RMOGA Pareto

 
Figure 8 Comparison of Nominal Pareto and RMOGA (L2 

norm) solutions for the two-bar truss problem 

Figure 9 compares the robustness index η for the solutions with 

fv=1 (the best fitness value in RMOGA, see Figure 7 with L2 norm) 
obtained using different distance metrics. As shown in Figure 9, 
there is some overlap between the solutions with respect toη . 
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Figure 9 Comparison of robustness index of solutions with fv=1 

using different distance metrics for the two-bar truss problem 
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Figure 10 Comparison of Nominal Pareto with robust 

solutions using RMOGA with L1 norm for the two bar truss 

problem 

Figure 10 compares the Nominal Pareto optimum solutions with 
all the robust designs obtained from RMOGA using the L1 norm 
distance metric (RMOGA with L1 norm).  Most of the robust 
solutions obtained using the L1 norm are further away from the 
origin which implies that the solutions belonging to the Nominal 
Pareto front are not necessarily robust. Finally, note that no robust 
( 1≥η ) solutions were obtained using the L∞ norm.  

From the simulation results for this example (see Figure 8 and 
Figure 10), we can conclude that the calculated robustness index is 
largely dependent upon the distance metric used. This also implies 
that robustness of design solutions obtained using RMOGA is 
largely dependent on the type of distance metric used to calculate 
the robustness index. 

 

4.2 Test Problem 2  

4.2.1 Problem Description 
The second test problem is to robustly design a simple speed 
reducer that might be used in a light airplane between the engine 
and the propeller. The problem is taken from Azarm and Li [25], 
but slightly revised here to form a multi-objective optimization 
problem. A schematic of the speed reducer to be optimized is 
shown in Figure 11. The first design objective is to minimize the 
volume of the speed reducer and the second objective is to 
minimize the stress in the first gear shaft. The problem has seven 
design variables: gear face width (x1), teeth module (x2), number 
of teeth in the pinion (x3, integer), distance between bearings 1 (x4), 
distance between bearings 2 (x5), diameter of shaft 1 (x6) and 
diameter of shaft 2 (x7).  

 

Figure 11 Schematic for speed reducer design problem 

       

The design is subject to a number of constraints imposed by gear 
and shaft design practices. The seven design variables are subject 
to an upper and a lower bound. There are eleven inequality 
constraints that take into consideration: stresses, deflections, space 
restrictions and design requirements. The units for all the design 
variables are in cm except for x3 and those of the objectives f1 and 
f2 are cm3 and kPa, respectively. The formulation of the problem is 
as follows: 
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4.2.2 RMOGA Solutions 
The known variation in the design variables ∆x1 and ∆x2 was set as 
0.01 and 0.1, respectively. The corresponding acceptable 
performance variation ∆f0,1 and ∆f0,2 were set to 225 and 125, 
respectively. The solutions for the speed reducer problem obtained 
from the RMOGA as well as the traditional MOGA are compared 
and discussed in this section. 
From Figure 12, we observe that not many solutions with the best 
fitness (fv = 1) are robust. Similar results were observed for the test 
problem 1 as well, based on which we can conclude that the best 
design solutions in terms of performance (objectives and 
constraints) are not necessarily robust. The RMOGA problem (6) 
has only three Pareto optimum solutions as shown in Figure 12. 
When we map those solutions from Figure 12 into the objective 
function space, we have the plot shown in Figure 13. There is an 
overlap (one point) between the RMOGA Pareto solutions and the 
Nominal Pareto front because this design solution is not robust (in 
L2 norm).  
Figure 13 also compares all the robust solutions (i.e., RMOGA 
robust solutions) as well as the RMOGA Pareto solutions (using 
L2 norm) with the Nominal Pareto front. Similar to the first test 
problem, some RMOGA robust solutions are further away from 
the origin compared to Nominal Pareto solutions. Figure 14 shows 
a comparison of the robustness index η  for the solutions with 

fv=1 (the best fitness value in RMOGA, see Figure 12 for L2 norm) 
obtained using the three different distance metrics. As shown in 
Figure 14, most of the solutions from L1 and L∞ norms are robust 
while none from L2 norm is robust (with fv=1). Figures 15 and 16 
compare the Nominal Pareto solutions with all robust ( 1≥η ) 

solutions obtained from RMOGA with L1 and L∞ norms, 
respectively. 
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Figure 12 Fitness value vs. robustness index results for the 

speed reducer problem from RMOGA (with L2 norm for R) 
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Figure 13 Comparison of Nominal Pareto with RMOGA (L2 

norm) solutions for speed reducer problem 
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Figure 14 Comparison of robustness index of different 

solutions with fv =1 obtained using different distance metrics 

for speed reducer problem 

For L1 and L∞ norms as well, we see that the robust solutions are 
further away from the origin compared to the Nominal Pareto 
solutions. Comparing the robust solutions in Figure 13, 15 and 16, 
we conclude that the robustness of design solutions is dependent 
on different distance metrics used to calculate the radius R in (5). 
And this implies that, as in test problem 1, robustness of design 
solutions obtained using RMOGA is largely dependent on the type 
of distance metric used to calculate the robustness index.  
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Figure 15 Comparison of Nominal Pareto solutions with 

robust solutions obtained using RMOGA with L1 norm for 

speed reducer problem 
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Figure 16 Comparison of Nominal Pareto with robust 

solutions obtained using RMOGA with L∞ norm for speed 

reducer problem 

5. CONCLUSIONS 
A deterministic Robust Multi-Objective Genetic Algorithm 
(RMOGA) is presented in this paper. This RMOGA gives a set of 
solutions that are Pareto optimum in terms of the performance (i.e., 
minimization of fitness value) and the robustness (i.e., 
maximization of robustness index). The fitness value accounts for 
the objectives and constraints of the original problem. The 
robustness index also accounts for variations in the objectives as 
well as constraints. The trade-off between the performance and 
robustness of a design solution has been shown. RMOGA uses an 
outer-inner optimization structure to solve the overall problem. 
Both the outer and inner optimization sub-problems are solved 
using a binary coded genetic algorithm. Any MOGA can be used 
in our approach. The approach does not require a presumed 
probability distribution of uncontrollable parameters and also does 
not utilize the gradient information of these parameters. Three 
different Euclidian distance metrics are used in conjunction with 
RMOGA to calculate the robustness index. 
This approach is applied to two engineering test problems. The 
results from RMOGA are compared to Nominal Pareto solutions. 
The robust design solutions obtained from RMOGA are 

777



                   

marginally inferior to the Nominal Pareto solutions in terms of 
performance. But at the same time, they are least sensitive to the 
variation in design parameters. In the two test problems it was 
found that the best design solutions in terms of performance 
(objectives and constraints) are not necessarily robust. RMOGA 
brings to light this trade-off between the performance of a design 
solution and its robustness, and thus can assist the DM in choosing 
the best possible solution which is also robust. Based on the 
simulation results, we conclude that the robustness of designs is 
largely dependent on the type of distance metric used to calculate 
the robustness index. 
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